LBL Updates

November, 2021



LBL Updates

 Continued work on multi-GPU U-Solve

* works with NVSHMEM on Summit (can run on Traverse, refers to
example scripts/run_cmake build _summit_nvshmem_gpu.sh for compiling)
® available from the nvshmem_multiGPUsolve branch

» Perlmutter(NVIDIA) and Spock(AMD)

* NVSHMEM deadlock issue on Perlmutter traced to CUDA runtime behavior
* ROCSHMEM still has runtime issue on Spock

« Continued updates to 3D Solve / interface

* Note, Nan will be on parental leave thru January



New U-Solve data structure on GPU

Background: SuperLU is designed for sparse LU with non-symmetric nonzero
patterns in L and U factors. We use supernode partition for the L-factor, to get
supernode size (dense submatrix) as large as possible. In general, the U-factor
does not have the same nonzero pattern as the L-factor, so the U data structure

uses a skylined representation that is compatible with the L supernodes partition.
o The big advantage is that we do not store any extra zeros
o The big disadvantage is that it is not friendly for fine-grained parallelism = U-solve
performance is poor on GPU

New design to mitigate L- and U-solve performance discrepancies:

o on GPU, use the same supernode data structure for both L and U, which requires
padding zeros in the U data structure = trade off memory for speed

o On CPU, use the existing data structures.

Code status: factorization is mostly working o
Next step: implement the new U-solve on GPU with this structure



SuperLU DIST algorithms flowchart © LI

Nonsymmetric pattern ()k

Preprocessing SuperLU

mostly on CPU GPU easy GPU hard GPU hard GPU in progress

Equilibrarion _ Numerical pivoting Fill-reducing order Symbolic
(diagonal scaling 2 P A r factorization
{A: B } > E:%;Z?t?gﬁ number) ' P 2;__ : ’ _— As hda ke -_— L, U structure «
erm £ IS irom Perm P, is from Aj structure

+ MC64 (serial)
» HWPM (par.)

A, « D, AD,

+ (Par)Metis
* Min. degree

___________________________________ w/ ExaGraph

. (Optional) Triangular solve Numerical LU
GPU In progress Iter. refinement w/ w/ transformed B factorization
transformed eqn: . B, =FP.D.B CPUe__ LU < LU(A)
A¥'= By Y=U"'l"'B GpU w/ diag.
perturbation
X= D, PcT Y CpU
can be on GPU CPU + GPU CPU + GPU

Solve the transformed system: (P. . D, AD.P")(P.D;*X)= P.P.D, B



Q&A



